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Abstract. We calculate the second virial coefficient of the quantum Lorentz gas with point 
interaction. It can be evaluated in closed form for arbitrary strength of the interaction. 
Particular attention is given to the critical coupling which gives rise to a zero-energy 
resonance. Point interactions satisfy a modified Levinson’s theorem; as a consequence we 
show that there is no cancellation between the bound state and the scattering contributions 
in the high-temperature expansion of the second vinal coefficient, contrary to the regular 
potentials case. We also derive high- and low-energy sum rules for the point interaction. 
As an application of the sum rules we rederive a high-temperature expansion for the second 
vinal coefficient. 

1. Introduction 

The S-matrix formulation of statistical mechanics through the virial expansion [ 13 has 
its origin in the work of Uhlenbeck and Beth [2] and Gropper [3] in the late 1930s. 
The approach proved particularly fruitful and has been extensively developed ever 
since. Today the method is well understood in the case of regular potentials [4,5]. 
However, in the case of singular interactions some work remains to be done. One 
interesting singular interaction not covered by available results on regular potentials 
is the zero-range or delta potential. In this paper we compute the second virial 
coefficient for the Lorentz gas with a non-relativistic zero-range interaction. This sort 
of interaction has been studied since the 1930s. For an extensive bibliography we refer 
the reader to [6]. 

In the case of three dimensions a 8-function potential is not a small perturbation 
of the Laplacian and we have to renormalise it. The formal Hamiltonian is 

H =  -A+AS(x). 

Here we set h = 2m = 1 and 8 is Dirac’s delta function. To define H as a self-adjoint 
operator on L2(R’ ) ,  we approximate it by a sequence 

of well defined Hamiltonians where g, are appropriately chosen form factors. We 
renormalise by adjusting the coupling constant A, of the approximating potentials so 
that the two-body scattering length a is fixed. 
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In 9 9  1 and 2 we describe our model. In 9 9  3 and 4 we carry out the renormalisation 
of the approximating Hamiltonians with separable potentials while keeping the scatter- 
ing length fixed. In 9 5 we calculate the second virial coefficient in terms of the 
temperature and  the scattering length of the underlying two-body process. We arrive 
at an explicit form for the second virial coefficient including the case where we have 
a two-body zero-energy resonance. This situation is particularly interesting: the reson- 
ance results in the three-body Efimov effect (an infinite number of bound states in the 
three-body problem when the two-body interactions have zero-energy resonances). 
The behaviour of the second and third cluster coefficients in the ‘Efimov limit’ for the 
Lorentz model with short-range interaction (with a coupling constant adjusted to 
produce a zero-energy resonance) has been studied in [4]. It was found that the 
divergence from the three-body bound state contribution cancels with the continuum 
contribution. In 9 6 we derive high- and low-energy sum rules for the delta potential 
and  we find there is no cancellation between the bound state and  the scattering 
contributions in the second virial coefficient when the interaction is described by a 
delta potential. Finally we conclude by comparing our results with the previous results 
on separable and  local potentials. 

2. The Lorentz model 

The model we consider is the quantum mechanical Lorentz gas where M ‘light’ particles 
without mutual interactions and  in equilibrium at temperature T are moving randomly 
and  independently of each other around N stationary ‘heavy’ scattering centres (ran- 
domly distributed) in a large box of volume R = L3 in R3. 

The Hamiltonian of our system is given by 

H;v = HO+ VN (2.1) 
where 

Ho= 1 P 2  
, = I  2m 

is the kinetic energy of the light particles (pi is the momentum operator of a light 
particle and  m its mass) and 

, = I  

Here 

is the total potential energy due  to the N scatterers, i.e. is the sum of the individual 
light-heavy interactions. 

3. The delta potential 

As mentioned in the introduction we will consider a zero-range or point interaction 
between the light and  the heavy particles. We are interested in the following 
potential V :  

VtL(x) = AG(x)tL(x) 
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where 6 is the Dirac measure. We should note that a Hamiltonian with a &function 
potential (in three-dimensional space) is not well defined except if the coupling constant 
is 'renormalised' to an infinitesimal value [7]. 

There are many discussions of the zero-range limit of quantum mechanical interac- 
tions in the literature. In particular we can describe a zero-range interaction as a 
boundary condition problem for the ( S  wave) free radial Schrodinger equation [8], 
we can study the zero range as the limit of local [6] or separable [9] potentials, or we 
can define zero-range interactions in terms of ground states [lo]. Alternatively for a 
discussion in terms of non-standard analysis see [ l l ] .  For an overview see [6,7]. 

4. A point interaction as a limit of separable interactions 

The zero-range interaction can be obtained from a separable interaction in the following 
way. Let us consider 

v=~u lgQ) (g , I  (4.1) 

where A, is the coupling strength constant and g, is a Yamaguchi form factor. To 
obtain the S potential in the limit, we have to impose [9] the condition 

lim g, ( k )  = I 

when 

a + + w  

which is fulfilled by the form factor 

For separable potentials the t matrix in momentum space is given by [SI 

Let us define the resolvent for the non-interacting system by 

Go( Z) = ( z - Ho) = ( z - 
and 

D,(z)=A, ' -  d3kGo(z)lgU(k)j2. J 
Since 

D ( z )  = lim D , ( z )  
U - + =  

does not exist for A, constant we choose A, such that 

DU(0) = Do 

where Do is a fixed constant that later we will relate to the inverse of the scattering 
length. Then we obtain the infinitesimal coupling constant 

(4.8) A, = (Do  - T*cY)-' 
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but the t matrix remains perfectly finite and well defined in the limit as a ++CO; in 
the limit we obtain 

(k’l t (z) lk)= (D0-2~’J-z) - ’  (4.9) 

i.e. 

(k’l t ( Z ) l  k )  = (Do + 2 &K)- ’  (4.10) 

if we map the two Riemannian sheets of 6 on one plane by using the transformation 
6= -iK. From (4.10) we see that we have a bound state when 

K = iD0/27r2 (4.11) 

and the K pole is in the upper half-plane, i.e. if Do>O. 
The S matrix for the S wave zero-range potential is given by [8] 

(4.12) 

where c is the inverse of the scattering length, i.e. c = - l /a .  It is related to the t matrix 

C + i K  s=- 
C - i K  

by 
s = 1 - 4T2Kit 

with 

t = ( k l t ( ~ ’ ) l k ) .  

Comparing (4.12) with (4.13) we obtain 

and comparing with (4.11) we conclude 

Do= - ~ T ’ c .  

(4.13) 

(4.14) 

that 

(4.15) 

We should remark that the approximating potentials are always attractive as the 
infinitesimal coupling constant A, given by (4.8) is always negative when a ++a. 
From (4.11) and (4.14) we can see that c < O  means that we have a potential attractive 
enough to support a bound state and the case c > 0 corresponds to a weakly attractive 
potential with an anti-bound state of energy E = - c2  (in the second sheet). In particular 
for c = 0 there is a zero-energy resonance which corresponds to the Efimov limit. 

5. The second virial coefficient 

Following [4] the second virial coefficient is given by 

B = -A32-’(Tr G:r) (5.1) 
where Y’ denotes the Watson transformation [12] and t is given by all connected 
diagrams of the light particle with one scatterer. Here 

A = (474)”’ (5.2) 
and the trace is taken in the light particle space [13]. We should remark that it is 
sufficient to consider a single light particle moving around the heavy ones since we 
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are considering identical, independent and distinguishable light particles with the same 
mass m. 

From (5.1) we can write 

B = -A3[O(-c) dE e-pE Im Tr Gi(E+)t(E+)]  (5.3) 
7r 

where E ,  is the binding energy 

and the first term on the RHS of (5 .3)  represents the bound state contribution. We have 

1 
ImTr[Gg(E+)t(E’)]= Im d3k- t ( z )  1 ( k 2 - z ) 2  

which by standard complex integration gives 

Im Tr[ Gi(E’)t( E’)] = 7r Im t ( z )  - ( A) 
- 1 c  __-- 

2&? c 2 +  E‘ 

Inserting (5.6) and (5.4) in (5.3),  we have 

B = -A’{O(-C) eCzP+i(sgn c) ec2P[1 - ~ ( C ~ P ) ” ~ ] )  

where 4 is the probability integral [14] 

2 ”  4 ( x )  = - 1 dt e-‘2 
G O  

and the functions 8 and sgn are defined by 

C 2 - 0  

c < o .  
sgn c = 

Equation (5.7) allows us to study the behaviour of the second virial coefficient at 
low and high temperatures. From this expression for B we see that if the interaction 
is attractive enough to support a bound state (c<O) the behaviour of B at low 
temperatures is 

since asymptotically [ 141 

(5 .9 )  

(5.10) 
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where 

If we have a weakly attractive interacti 

4.rrp B --+0( 1 ) .  
C 

x = 1x1 e i v  

n ( c>O)  we 

On the other hand at high temperatures (5.7) becomes 

Q 2 < i T .  2 

onclude 

(5.11) 

19(-c)  eC2b+t(sgn c)  ( 5 . 1 2 )  

as it is 

For both c > 0 and c < 0 we obtain 

B -  -4.R3/2 P 3 1 2  e c 2 P  + 8 7 7 p 2 c + O ( P 3 ) .  (5.13) 

In the case c = 0 we should note that for c + 10 we obtain exactly the same value, namely 

B =  -4T3/2 P 3 1 2  ( 5 . 1 4 )  

i.e. we have the explicit form of the second virial coefficient in the case c = 0 (the 
Efimov limit). 

Remark 1 .  We note that if we would study the high-temperature behaviour of B 
considering the point interaction as the limit of a separable potential we would have [ 4 ]  

B = 8T3/21a2p5/2 1 = A a - 3 ~ 2  (5.15) 

where A is the coupling constant. In particular, 1 = - 1  is the Efimov limit and  we 
would obtain 

B =  -8, , .3/2 a P  2 5 1 2  (5.16) 

which is divergent for a++a.  Hence we see that we may not interchange the local 
( a  + +a) and the high-energy limit ( P  + 0). Furthermore in the local case we know 
[ 5 ]  that 

(5.17) 

where the coefficients c, are calculated by integrating certain polynomials that are a 
three-dimensional generalisation of the invariants of the Korteweg-de Vries equation 
[ 1 5 ] ,  for example, 

c1 = I d r v ( r )  

where U( r )  is the local interaction between the light and  the heavy particles. Since the 
delta potential can be considered as the limit of separable or local interactions, we 
see from ( 5 . 1 3 )  that the exponent in the high-temperature behaviour of the second 
virial coefficient for a point interaction v = :, coincides neither with that for separable 
interactions, v = :, nor that for local potentials, v = 1 .  
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Remark 2. From (5.7) we see that the second virial coefficient in our model is always 
negative which seems not to agree with the results obtained experimentally for several 
monatomic gases [ 161. In fact, it is found that the second virial coefficient is negative 
at low energies, becomes zero at a certain temperature (the 'Boyle' temperature) and 
continues to be positive. However as our approximating potentials are always attractive 
(4.8) the pressure on the walls is decreasing. This agrees with the fact that when we 
add the first subtraction term (the second virial coefficient) in the law for ideal gases 
we obtain a lower pressure. 

6. Higher-order Levinson's theorems for the delta potential 

The higher-order versions of Levinson's theorem consist in the integration in the 
complex plane of the trace of the resolvent difference multiplied by a function g( z) = z L .  
Here L can take positive or negative integer values, depending on whether we are 
interested in high- or low-energy sum rules. We evaluate 

Jc dzg(z)  Tr Gt(z) t (z)  = O  (6.1) 

along a contour of integration composed by the contours C,, C, and C,. The contours 
C, encircle the distinct eigenvalues of the Hamiltonian, C, is defined as the set of 
points in the complex plane having a distance 7 or greater away from the positive real 
axis and C, is a circle centred at the origin with radius y + Sa.  If we set g( z )  = z L  
in (6.1) the integrand is not an integrable function. As a consequence we have to 
consider the function 

(6.2) 
where the functions uL are subtractions made in order to obtain an integrable function. 

Since our potential is singular we cannot take over the sum rules derived for local 
[17] and for separable potentials [4] directly in our case (point interactions satisfy a 
modified Levinson's theorem). In fact, from (5.6) we obtain (Nb = 1) 

Tr Gi(z) t (  z )  - r L ( z )  

dk21mTrGi f=r r (Nb- r )  (6.3) 

where N b  is the number of discrete eigenstates of the Hamiltonian with eigenvalue 
-Af < 0, counting multiplicity. 

We remark from (5.6) that in our case the integrand in the Efimov limit ( c  = 0) is 
distribution valued. By Taylor's expansion technique for Ic/k( < 1 

5 

Im Tr Gi(k) t (k)  = - ( - l )n- '  
n = l  

and we obtain using (5.6) and (6.3) the high-energy sum rules 

(6.4) 

By applying a corresponding method to derive low-energy sum rules for a delta potential 
we obtain the convergent expansion for 1 k/ cI < 1 

K 
I m T r G i ( k ) t ( k ) = -  

n = l  
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and 

We should remark that if we look at the delta potential as a separable interaction 
we would obtain an expression similar to the high-energy sum rules derived for 
separable potentials [4] with 1 = r2Aa. As a consequence we see that the first subtraction 
term would be divergent in the limit a + +CO. 

7. High-temperature behaviour of the second virial coefficient 

Sum rules as those derived in § 6 are of interest in nuclear scattering and statistical 
mechanics as they provide a relation between the number of bound states, phase shift 
and binding energies. 

In [4,17] it is shown that there is a cancellation between the bound state and the 
scattering contributions in the high-temperature expansion of the second virial 
coefficient in the separable and local potentials case. Here we show there is no 
cancellation when the interaction is described by a delta potential as an application 
of the sum rules derived in the previous section. 

We consider now the continuum contribution B“ for the second virial coefficient 
+a 

B c = - A ” (  -+lo d E e - P E I m T r G g t  

By partial integration with respect to E and using (6.5) we obtain 

(7.1) 

(7.2) 

By repeated partial integration and writing (6.5) as a multiple integral we obtain for 
the first terms of the high-temperature expansion of the second virial coefficient 

(7.3) 

where Nb = 1 (0) when c < 0 ( c  > 0). 

form for (5.7), i.e. 
We should note that (7.3) is just the high-temperature expansion of our closed 

(7.4) B 2 -4r3 /2p3/2+ 8 r p 2 c  -47T3/2ps/2c2. 

8. Conclusions and additional remarks 

From (6.5) and (6.7) we can observe some differences between our sum rules and the 
ones derived for local [17] and separable potentials [4]. In fact even though our sum 
rules are very similar to the local case we should note that we have no need of a 
correction term for the first sum rule ( L  = 0). We note that this feature is shared also 
by the sum rules for separable interactions. Further, the first subtraction term in the 
high-energy sum rules is proportional to k-3  and not to k-’ as for local potentials. 
We remark that this is also shared by the separable Yamaguchi form factor [18]. 
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While there is a cancellation between the bound state and the continuum contribu- 
tions in the second virial coefficient at high temperatures for regular potentials [4,5] 
we see from (7.3) that, when the interaction is described by a point interaction, the 
bound state contribution cancels with part of the continuum contribution. In the case 
of zero-range interaction it is not obvious how to verify this cancellation since the 
bound state energy and the scattering are given in terms of the scattering length. 
However, we note that in (7.5) the cancellation in fractional powers in j? does not 
occur just because of the factors Nb -; instead of Nb ( Nb = l ) ,  which are characteristic 
of the modification of Levinson’s theorem. Consequently there remain powers of the 
binding energy. As we remarked before, the leading term of the high-temperature 
expansion of the second virial coefficient is P 3 I 2  and not PS” or j?, characteristic of 
the separable or the local interactions, respectively. 

The sum rules can provide us with an indication of the behaviour of the third virial 
coefficient in the presence of the Efimov effect. Although the bound state contribution 
to the third virial coefficient produces a divergence, this cancels explicitly with the 
continuum contribution when the interaction is an S-wave Yamaguchi potential [4]. 
Recently this has been seen also for local potentials [19]. As indicated above we expect 
only partial cancellation. It would be interesting to see the effect of this partial 
cancellation on the third virial coefficient in the Efimov limit. 
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